Conference on Motility in Microbes, Molecules and Matter, 6-7 December 2021, London, England

Image credit: Esinam Dake, Loughborough University
Living systems are continually in active motion. From global scale migration down to enzymatic conformational transitions and kinetic action, living systems self-organize by moving. Moreover, motility as a response to stimuli is a key strategy by which living organisms capitalize on opportunities and combat threats. Motion is then a characteristic hallmark of biological complexity; however, it is also fundamentally physical. This has made studying motility one of the most fruitful points of collaboration between biologists and physicists, and remains an exciting frontier for both groups.This workshop aims to stimulate new collaborative partnerships between experimental biologists and computational physicists. The programme is organized jointly by the IOP Biological and Computational Physics Groups and seeks to address: Biological questions that have yet to receive sufficient attention from computational modellers; Emerging numerical approaches with potential for simulating biological motions.

More details can be found at the conference webpage:

Sarah Jenkins Awarded IoP CPG Thesis Prize

This year’s 2021 IoP CPG Thesis Prize has been awarded to Sarah Jenkins, University of York. Sarah’s thesis, titled Spin Dynamics Simulations of Iridium Manganese Alloys, develops an atomistic model of IrMn. This poorly understood material is antiferromagnetic and has been used in hard disk drives for some time; however, its physics at the atomic scale has not previously been well understood due to the complexity of the material’s structure. Sarah implemented a multiscale micromagnetic model within the open-source VAMPIRE simulation package. Sarah’s thesis presents her findings on IrMn alloys in three parts: (i) its ground state magnetic structure and thermal stability, (ii) its magnitude and magnetic anisotropy (iii) the interaction (exchange bias) at the interface with a ferromagnetic layer. Her results resolve the microscopic origins of exchange bias with potential impacts in future data storage, neuromorphic computing and antiferromagnetic spintronics.

We look forward to hearing about Sarah’s work in the CPG Talks Series and reading more about Sarah’s project in the next IoP Computational Physics Group Newsletter. In the meantime, Sarah’s thesis is available online.

Javier Díaz Brañas Awarded IoP CPG Thesis Prize

This year’s 2020 IoP CPG Thesis Prize has been awarded to Javier Díaz Brañas, University of Lincoln. Javier’s thesis, titled Computer Simulations of Block Copolymer Nanocomposite Systems, implemented efficient, parallel code to simulate the interaction of nanoparticles in diblock copolymer systems by developing a hybrid-technique based on Cell Dynamic Simulations for the polymers and Brownian Dynamics for the particles. Block copolymer melts can themselves self-assemble into mesoscale soft matter structures, thanks to the connectivity between different segments along these macromolecules. The addition of nanoparticles can induce morphological transitions, resulting in complex co-assembly processes in which a rich variety of structures are formed.

A large-scale simulation result of block copolymers mixed with nanoparticles (a) and an associated detailed view around a single nanoparticle (b)

We look forward to reading more about Javier’s work in the next IoP Computational Physics Group Newsletter. In the meantime, Javier’s thesis is available online.